There is no way we could do this by hand and even our calculator can't do it. However, there is a way to get our calculator to do this problem. But first, it requires us to use our powers of insight as we examine the histogram of the probability model as *n* increases. We can see that the shape of the distribution is unimodal and that it becomes more symmetric as *n* increases. That's it it's looking more and more like a Normal model!

OK but how big does *n* have to get before the distribution is symmetric enough? We just need to remember how Normal models work. The problem is that a Normal model extends infinitely in both directions but a Binomial model must have between 0 and n successes, so if we use a Normal model to approximate a Binomial, we have to cut off its tails. That's not very important if the center of the Normal model is so far from 0 and n, that the lost tails have only a negligible area. More than three standard deviations should do it, because a Normal model has little probability past that.

So the mean needs to be at least 3 standard deviations from 0 and at least 3 standard deviations from n. Let's look at the 0 end.

We require:	<mark>μ - 3σ > 0</mark>
Or in other words:	<mark>μ > 3σ</mark>
For a Binomial that's:	<mark>np > 3√npq</mark>
Squaring yields:	<mark>n²p² > 9npq</mark>
Now simplify:	<mark>np > 9q</mark>
Since $q \le 1$, we can write:	<mark>np > 9</mark>

For simplicity we usually demand that np (and nq for the other tail) ≥ 10 to use the Normal approximation.

Assumptions and Conditions for using Normal Approximation.

The Binomial probability model	
becomes difficult/impossible for	
Fortunately it can	large <i>n</i> .
be approximated by	a Normal probability model
as long as we meet the	Success/Failure
Condition that	we expect at least 10 successes and 10 failures:
	$np \ge 10$ and $nq \ge 10$
On the AP Exam students are	
required to, not just	check
the conditions. This	state
means	using the values given in the question to show your work!